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Digital quantum simulation
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• Analog machines have made impressive progress on 

quantum simulation of a few simple models

• Universal digital machines promise more flexibility, but have 

so far only made small-scale demonstrations

40 years later, this dream remains largely unrealized

C. Chiu / Harvard G. Pagano / Rice LMU Quantum Optics Group

1982
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Quantum advantage on useful problems
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• Quantum algorithms for solving useful problems generally impose limited 

entanglement/classical cost per quantum gate
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Quantum advantage on useful problems
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• Quantum algorithms for solving useful problems generally impose limited 

entanglement/classical cost per quantum gate

• Useful problems have structure that often enables high-performance 

classical algorithms with much lower cost than exact circuit simulation

M. Schmitt, M. Heyl. PRL 125, 

100503 (2020).

Sparse Pauli methods Variational wave functions Limited-entanglement methods
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Digital quantum magnetism
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• Very qubit native, but entanglement per gate is limited by the need to 

approximate continuous time evolution:

Where to start: Dynamics of magnetic systems
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Digital quantum magnetism
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• Quantum circuits implementing time evolution break continuous time 

translation symmetry (i.e., do not conserve energy)

 
 
 
 
  
 
  
 
 
 
  
 
 
  

                              

      

  

      

       

     

• Even though late-time states look infinite temperature / chaotic, at intermediate 

times they can reach a prethermal regime when time step    is small enough.
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Magnetic simulations on           ’  H2
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Transverse-field Ising model

56 qubits (7x8 lattice)

Digitized dynamics
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• Periodic boundary conditions minimize finite-size effects (easy on H2)

• Minimal model with non-trivial physics and no exact solution
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(Pre) Thermal physics from dynamics
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• If the time step is small enough, the dynamics reveals a thermal phase diagram

• We can effectively tune the temperature by changing our initial state
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Observable

Time

Initial product state

0.5 1.0 1.5 2.0 2.5
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• Too hot:     Weak correlations, low signal

• Just right:  High entanglement and strong correlations

Where can a quantum computer help?
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• Too cold:   Low entanglement, tensor networks effective
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Benchmarking machine performance at low temperature
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• We use the low-temperature quench (where classical MPS simulations are barely 

manageable) to benchmark the quantum data and error mitigation techniques

0.5 1.0 1.5 2.0 2.5



© 2025 Quantinuum. All Rights Reserved.

  

   o 
2  

  

Classically difficult dynamics at intermediate temperature
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• By raising the temperature, we can observe (pre)thermalization in a regime with too 

much entanglement for accurate MPS simulations

Largest circuits had 2350 two-qubit gates!

0.5 1.0 1.5 2.0 2.5
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Classically difficult dynamics at intermediate temperature
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• Dynamics at this scale seriously challenges many state-of-the-art classical 

simulation methods
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Experimental observation of hydrodynamic behavior
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• By inserting energy locally and watching the relaxation, 

we observe an emergent hydrodynamic behavior

arXiv:2503.20870

• By Fourier transforming the diffusion equation, we 

expect Γ𝑞 ∼ 𝒟𝑞
2. 

• We observe and measure the diffusion constant 𝒟, a 

(potentially) classically difficult-to-compute quantity.

energy

density

x position
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How did we get good results?
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Error mitigation
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Dynamics simulations near thermal 

equilibrium are inherently robust to errors!

• Y. Yang et. al., PRX Quantum 4, 030320 

(2023).
• E. Granet and H. Dreyer, PRX Quantum 6, 

010333 (2025)
• EC, Y.-H. Chen, M. Lubasch, D. Hayes, M. 

Foss-Feig, arXiv:2410.10794 (2024).

Our native arbitrary-angle 2Q gates 

improve with decreasing gate angle

• Our maximum-angle 2Q gate 

infidelity ∼  ×   −3 is already 
state-of-the-art. 

• For the  −𝑖(0.25)𝑍𝑍 gate in our 
experiments it is 6 ×   −4.
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Circuit-level error mitigation
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• Dynamical decoupling (DD) to cancel coherent memory 

errors

• Randomized compiling (RC) to make errors incoherent

• Zero noise extrapolation (ZNE) to estimate noise-less 

observable

• Leakage detection (LD) gadget to mitigate leakage errors
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LD

ZNE

RC

Using classical compute functionality on our machines we could 

compile once and generate a different random circuit in each shot. 

arXiv:2503.20870
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Post-processing error mitigation

Public

• We performed ZNE on our 2Q gate error by learning 

the error model and randomly inserting Paulis.

• We used two points and an exponential decaying fit.

• We optimally chose the amplification factor and the 

number of shots to allocate between the two points.

• Using benchmarking circuits, we kept track of the two-

qubit gate fidelity to adjust our ZNE fits.

Zero-noise extrapolation (ZNE) Zero-noise regression (ZNR)

(synthetic data to 

illustrate the method)

• We performed ZNR on our leakage error.

• Using the LD gadget, we recorded how many 

leakage errors were detected in each shot.

• We binned observables by numbers of errors and 

performed a fit to obtain the zero-error result.

• Improved error bar compared with post-selection.

• Can be used with quantum error detection.

See also: R. Nigmatullin et 
al. Nature Physics (2025).

arXiv:2503.20870
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Outlook
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• Digital quantum computers, aided by error mitigation methods, have finally achieved a level of 

accuracy where they can compete with the best classical methods on scientifically useful problems. 

• The main limiting factor in this work was system size!

This work Coming soon
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Thanks!
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Reza Haghshenas Michael Mills Michael Foss-Feig

And numerous institutions contributing to this work

And many, many people responsible for H2
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