

Digital quantum magnetism at the frontier of classical simulations

Eli Chertkov

Unitary Foundation Werqshop, 7/17/2025

Digital quantum simulation

1982

40 years later, this dream remains largely unrealized

 Analog machines have made impressive progress on quantum simulation of a few simple models

LMU Quantum Optics Group

 Universal digital machines promise more flexibility, but have so far only made small-scale demonstrations

Quantum advantage on useful problems

 Quantum algorithms for solving useful problems generally impose limited entanglement/classical cost per quantum gate

Quantum advantage on useful problems

- Quantum algorithms for solving useful problems generally impose limited entanglement/classical cost per quantum gate
- Useful problems have structure that often enables high-performance classical algorithms with much lower cost than exact circuit simulation

Sparse Pauli methods

Variational wave functions

Limited-entanglement methods

Digital quantum magnetism

Where to start: **Dynamics of magnetic systems**

 Very qubit native, but entanglement per gate is limited by the need to approximate continuous time evolution:

Digital quantum magnetism

 Quantum circuits implementing time evolution break continuous time translation symmetry (i.e., do not conserve energy)

• Even though late-time states look **infinite temperature** l **chaotic**, at intermediate times they can reach a **prethermal** regime when time step dt is small enough.

Quantinuum's H2

Magnetic simulations on Quantinuum's H2

Transverse-field Ising model

$$H = J \sum_{\langle ij \rangle} Z_i Z_j + h \sum_i X_i$$

56 qubits (7x8 lattice)

Digitized dynamics

- Periodic boundary conditions minimize finite-size effects (easy on H2)
- Minimal model with non-trivial physics and no exact solution

(Pre) Thermal physics from dynamics

- If the time step is small enough, the dynamics reveals a thermal phase diagram
- We can effectively tune the temperature by changing our initial state

Where can a quantum computer help?

☐ Too cold: Low entanglement, tensor networks effective

O Too hot: Weak correlations, low signal

Just right: High entanglement and strong correlations

Benchmarking machine performance at low temperature

 We use the low-temperature quench (where classical MPS simulations are barely manageable) to benchmark the quantum data and error mitigation techniques

Classically difficult dynamics at intermediate temperature

• By raising the temperature, we can observe (pre)thermalization in a regime with too much entanglement for accurate MPS simulations

Largest circuits had 2350 two-qubit gates!

Classically difficult dynamics at intermediate temperature

 Dynamics at this scale seriously challenges many state-of-the-art classical simulation methods

Experimental observation of hydrodynamic behavior

 By inserting energy locally and watching the relaxation, we observe an emergent hydrodynamic behavior

$$\mathcal{E}(x) = \frac{J}{4} \sum_{j \in \langle i \rangle} \langle Z_i Z_j \rangle \sim \text{``energy density''} \qquad \widetilde{\mathcal{E}}(q) = \frac{1}{\sqrt{L_x}} \sum_{x} e^{iqx} \mathcal{E}(x)$$

- By Fourier transforming the diffusion equation, we expect $\Gamma_q \sim \mathcal{D}q^2$.
- We observe and measure the diffusion constant \mathcal{D} , a (potentially) classically difficult-to-compute quantity.

How did we get good results?

Our native arbitrary-angle 2Q gates improve with decreasing gate angle

- Our maximum-angle 2Q gate infidelity $\sim 1 \times 10^{-3}$ is already state-of-the-art.
- For the $e^{-i(0.25)ZZ}$ gate in our experiments it is 6×10^{-4} .

Dynamics simulations near thermal equilibrium are inherently robust to errors!

- Y. Yang et. al., PRX Quantum 4, 030320 (2023).
- E. Granet and H. Dreyer, PRX Quantum 6, 010333 (2025)
- EC, Y.-H. Chen, M. Lubasch, D. Hayes, M. Foss-Feig, arXiv:2410.10794 (2024).

Error mitigation

Circuit-level error mitigation

- Dynamical decoupling (DD) to cancel coherent memory errors
- Randomized compiling (RC) to make errors incoherent
- Zero noise extrapolation (ZNE) to estimate noise-less observable
- Leakage detection (LD) gadget to mitigate leakage errors

Using classical compute functionality on our machines we could compile once and generate a different random circuit in each shot.

Post-processing error mitigation

Zero-noise extrapolation (ZNE)

- We performed ZNE on our 2Q gate error by learning the error model and randomly inserting Paulis.
- We used two points and an exponential decaying fit.
- We optimally chose the amplification factor and the number of shots to allocate between the two points.
- Using benchmarking circuits, we kept track of the twoqubit gate fidelity to adjust our ZNE fits.

arXiv:2503.20870

MUUNITNAUO

Zero-noise regression (ZNR)

- We performed ZNR on our leakage error.
- Using the LD gadget, we recorded how many leakage errors were detected in each shot.
- We binned observables by numbers of errors and performed a fit to obtain the zero-error result.
- Improved error bar compared with post-selection.
- Can be used with quantum error detection.

Outlook

- Digital quantum computers, aided by error mitigation methods, have finally achieved a level of accuracy where they can compete with the best classical methods on scientifically useful problems.
- The main limiting factor in this work was system size!

Thanks!

Reza Haghshenas

Michael Mills

Michael Foss-Feig

Digital quantum magnetism at the frontier of classical simulations

R. Haghshenas,^{1,*} E. Chertkov,^{1,*} M. Mills,¹ W. Kadow,^{2,3} S.-H. Lin,^{4,2,3} Y. H. Chen,¹ C. Cade,⁵ I. Niesen,⁵ T. Begušić,⁶ M. S. Rudolph,⁷ C. Cirstoiu,⁸ K. Hemery,⁴ C. Mc Keever,⁹ M. Lubasch,⁹ E. Granet,⁴ C. H. Baldwin,¹ J. P. Bartolotta,¹ M. Bohn,¹ J. Cline,¹ M. DeCross,¹ J. M. Dreiling,¹ C. Foltz,¹ D. Francois,¹ J. P. Gaebler,¹ C. N. Gilbreth,¹ J. Gray,⁶ D. Gresh,¹ A. Hall,¹ A. Hankin,¹ A. Hansen,¹ N. Hewitt,¹ C. A. Holliman,¹⁰ R. B. Hutson,¹ M. Iqbal,⁴ N. Kotibhaskar,¹ E. Lehman,¹ D. Lucchetti,¹ I. S. Madjarov,¹ K. Mayer,¹ A. R. Milne,⁹ S. A. Moses,^{1,11} B. Neyenhuis,¹ G. Park,¹² B. Ponsioen,⁵ M. Schecter,¹ P. E. Siegfried,¹ D. T. Stephen,¹ B. G. Tiemann,¹ M. D. Urmey,¹ J. Walker,¹ A. C. Potter,¹ D. Hayes,¹ G. K.-L. Chan,^{6,13} F. Pollmann,^{2,3} M. Knap,^{2,3} H. Dreyer,⁴ and M. Foss-Feig¹, †

And numerous institutions contributing to this work

And many, many people responsible for H2

