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DQC the Background



“if you are building things for tomorrow’s quantum computers
you are building things for distributed quantum computers”



What is DQC?

Network
Scalability
> Qubit Capacity Expansion
> (Heterogeneous) Hardware Integration < > < >
Computation + Communication T A A
Problem v l l
o
® e / < > < >
o
° j: A A A
‘ " | | | |
\ 4 \ 4 \ 4
o
o
< > < >




What counts as “DQC”

Quantum devices that can individually perform quantum
computations that cannot be classically simulable, are separated
spatially, and are interconnected with each other via quantum
channels

* Multiple quantum chips within a single device, performing a joint quantum
computation and communicating via quantum channels under a shared
classical control system (aka I'll permit shared memory access *for now”).

» Separate quantum computers interconnected via a local guantum network,
enabling quantum state transfer and entanglement distribution to perform
distributed algorithms (HPC like cluster applications).

* Long-range quantum communication (quantum internet like stuff)
coordinating remote quantum nodes with the purpose of quantum
computation.
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Rigetti Demonstrates Industry’s Largest Multi-Chip Quantum
Computer; Halves Two-Qubit Gate Error Rate
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How do we DQC?
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How do we DQC?

A B
N e
Ta @ p Hypergraph
B l I p H I‘; T" —_ —_— partitioning
C H I H heuristics
’ l
D H 5 n KaHyPar
Heunen, Christiaan, and Pablo Andres Martinez. "Automated distribution of quantum C ’Y D

circuits." Physical Review A 100 (2019): 032308. FIDUCCIA MATTHEYSES



AN /
How do we DQC? \ /

: T H | meas Non local gates
C_.i_._.f._ _.E._r.h_._ﬁ;;s_._ e T_' ......
g i j |

cat-entangler cat-disentangler




Primitives
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Figure 2. A remote CNOT gate implemented using: (a) cat-comm [19, 20]; (b) 1TP; (c) 2TP; and (d) TP-safe. Zigzags represent
ebits, which here, in the ideal case, are Bell pairs in the state [T = % (]00) + |11)). Double lines represent classical

communication. Gates classically connected to a measurement device activate on a measurement result of ‘1’ only.
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DQC errors: What breaks down



The weight of errors

What is the bigger problem? Local errors or communication errors?
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The weight of errors

What is the bigger problem? Local errors or communication errors?
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Synchronization lag

Temporal drift can break assumptions which rely on tightly controlled models.
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correction below the surface



. Classical computer

’ Quantum computer

Heterogeneous landscape

* Redundant mitigation
* Heterogeneous noise profiles
* Overhead from classical coordination
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. QPU1

Compilation Choices: open questiorfw

How do we know which partitioning strategy is optimal in advance?

Maria Gragera Garces | WERSHOP 2025 | NYU



Vertical vs Horizontal cuts: a quick vocab
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Vertical vs Horizontal cuts
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Vertical vs Horizontal cuts

Telegate (2 2y (7’ Teledata

(@)

QPU .\[

(c)

e

a2 -t

%

[

@

QPU u’ :

4

QPU A !

{x} Z

@ -

Tu

b

a6 < X Z
QPUB ’q"

Target CNOT

@

I QPUB{q

Teleportation

Teleportation

QPU .\{ -

@ —
QPUB{ ¢

3

Target CNOT

@



“‘quantum compilers should be noise aware’



Vertical vs Horizontal cuts
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QEM Techniques in a Distributed World



Noise-aware sampling in distribution today

Error mitigation: noise-aware compilation points the circuit to the best qubits (low error from calibration data), skip
the bad ones, and run the same QAOA subcircuit across multiple clean qubit blocks (multi-sampling).
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Chen, Kuan-Cheng, et al. "Noise-aware
distributed quantum approximate optimization
algorithm on near-term quantum hardware." 2024
IEEE International Conference on Quantum
Computing and Engineering (QCE). Vol. 2. IEEE,
2024.



What happens to error mitigation techniques
when you distribute?

WORK IN

PROGRESS

Let’s look at some simulation results!

Local noise: 0 - 0.4 (probability that the output is replaced by a
random Pauli error)

Telecom noise: 100 to 120% of local noise
Partitions: 2,4
Circuits: 20 logical qubits



ZNE in a Distributed World: Teleportation
noise

ZNE Correction vs Partitions (Comm Noise = 0)
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Correction (%)

Local vs Global folding corrections under
partitioning

Correction vs Comm Noise Ratio (Partitions = 1)
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Bottlenecks

- Simple simulators cannot uphold realistic distributed circuits
(realistic benchmarks are too large)

- There are no accessible distributed quantum systems where we
can direct workloads straightforwardly for testing

Correction vs Comm Noise Ratio (Partitions = 1) Correction vs Comm Noise Ratio (Partitions = 2)
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QEM Techniques in a Distributed World

How we are doing it:
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The shameless plug: HDH package

hdh 0.1.2 o ||

pip install hdh ® Released: Jul 1,2025

Towards Model Agnostic Distribution of
Quantum Computations with Hybrid
Dependency Hypergraphs

Hybrid Dependency Hypergraphs for quantum computation: translation, visualization, and partitioning. Manage project

Navigation Project description Maria Gragera-Garces, Chris Heunen, Mahesh K. Marina

School of Informatics, The University of Edinburgh
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Abstract—Scalable quantum computing will ul-
timately require distributing computations across
multiple devices. Existing distribution approaches
focus exclusively on circuit-based compilation,
neglecting classical data and alternative quantum
computational models. As a result, hardware

patibility and experi tal exploration of
network architectures is hindered. We introduce

Despite MBQC’,

These details have been verified by PyPI qlito Hybl'id Dependency Hypergraphs (HDHs), a framework is not uniq Cto MBQC’ quantum
o 4 walks, topological quantum computing, and

- model-agnostic framework that generalizes circuit- polog 4 .p g
Project links based compiler distribution strategies, HDHs are Other models of quantum computation also lack
A Homepage presented in detail through measurement-based @ distribution framework. Current research is
quantum computation, a model well suited for focused solely on quantum circuits [2]. This
Maintainers direct integration with both classical and quantum  Jine of research abstracts quantum circuits to

network hardware. We also introduce mappings
for quantum circuits and quantum walks. Finally,
we show how HDHs enable architecture-aware
distribution through resource-aware metrics, in-

hypergraphs and then partitions those.
We propose a framework, namely Hybrid
Dependency Hypergraphs (HDHs), that extends

° MOdeI ag nOStIC cluding parallelism. existing quantum circuit-based approaches be-

. . . In]d)e_xtzi‘:fmt:d—;)isttﬁbﬂted Ql;antu::n Cﬂmtl?“t' yond the quantum circuit model, and incorporat-
« Consider telegate and teledata simulateneously MHQC, Quantum Circuts, Hypergraph, DR 115 clisical data and comectiviy consirints
° L. INTRODUCTION by the distribution of quantum computations

Backwards compatible with QASM and Qiskit monolithic codes

Standalone quantum systems face fundamen-
tal seelability censtraints, such as fault-tolerance
1equiremnts [|])'widely seen as necessitating
distribution [2]. A modular, networked approach
with quantum links, enabling entanglement and

and establishs a foundation for model agnostic
distributed quantum computing.

As a first step toward a fully model-agnostic
paradigm, this paper presents the HDH for-
malism and its application to MBQC. Every
determinictic MROC nattern induces an HDH
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Error mitigation software!

| |
Distributed m I I
Qiskit code

EM
implementation



Monolithic
Qiskit code

HDH
partitioning

Distributed
Qiskit code

EM
implementation

Mar

Simulation tests

harces | WERSHOP 2025 | NYU



Distribution-Aware QEM

How should the field move forward?

- More work on distributed error profiling both on
and real devices (few/

none usable distributed quantum computers today)

- Testing error mitigation and correction techniques in distributed
setups (suffers from the same issues as above)

- Development of error mitigation and error correction
that is distribution aware



“if you are building things for tomorrow’s quantum computers
you are building things for distributed quantum computers”

Thanks!



