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Bringing quantum to life

Chemistry

Network  
medicine

Quantum Hardware

Noise mitigation

Applications

IC Measurements

Compilation

Quantum SDKs (Qiskit, …)

Aurora 
Full-stack software platform for drug design and 
discovery

au
ro

ra

Other verticalsHealthcare 
Life sciences

We develop quantum software that  
makes quantum computers useful. 

We use the unparalleled power of quantum computers 
for the fast and efficient cure and prevention of diseases.  

Our mission



A hybrid approach
We prioritise combining quantum 
computing with tensor networks and 
high-performance computing (HPC) 

Algorithmiq
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A hybrid approach
We develop methods built around 
informationally complete positive 
operator value measurements

Algorithmiq

Informationally complete measurements and tensor networks

Quantum computers             +            Tensor networks on HPC

Informationally complete generalised 
measurements (IC-POVMs)

• Provide shot efficient, unbiased 
estimators of the quantum state 

• Can be optimised to extract more 
information 

• Allow for linear transformations in 
post-processing



Algorithm review

Scalable tensor network 
based error mitigation for 
near term quantum 
computing, Filippov 2023



TEM We build a tensor network that 
encodes the noise inverse map.

Algorithmiq Algorithm overview

A scalable tensor network based error mitigation for near term quantum computing
• Noise mitigation map in software post-

processing 

• Tensor network noise mitigation method, 
computationally easier as the noise 
decreases  

• A tensor network encodes the inverse of 
the noise map (cheaper than simulating 
the whole circuit) 

+
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Noise Assumptions: 
• Not necessarily local 

• Small (consistent with existing hardware and 
constantly improving) 

• Known/Efficiently representable  
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Truncation Untreated, the bond dimension of the 
MPOs would grow exponentially in the 
number of layers.

Algorithmiq Algorithm overview
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The MPO is compressed after each iteration 
either to a fixed bond dimension or to a 
desired precision. 

This is achievable using the smallest singular 
values in the canonical representation of the 
MPO or by variational means

𝒩−1

𝒩 ≈ Id + ϵΛ

• MPO compression error is at most linear in  

• MPO compression cost is cubic in bond dimension 

ϵ



Noise characterisation Capture gate noise, crosstalk and 
decoherence using noise characterisation

Algorithmiq Algorithm Overview

Represent the noise channel with a sparse Pauli 
Lindbladian (SPL) noise model 

     ,   𝒩 = eℒ ℒ = ∑
i

λi(PiρP†
i − ρ)

van den Berg, E., Minev, Z.K., Kandala, A. 2023
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Noise characterisation Capture gate noise, crosstalk and 
decoherence using noise characterisation

Algorithmiq Algorithm Overview

Represent the noise channel with a sparse Pauli 
Lindbladian (SPL) noise model 

     ,   

 
Pauli twirling employed to bring into Pauli form

𝒩 = eℒ ℒ = ∑
i

λi(PiρP†
i − ρ)

 are learned 
through cycle 
benchmarking

λi

Each layer in the 
circuit is 
accompanied by  
it’s own learned 
noise channel

van den Berg, E., Minev, Z.K., Kandala, A. 2023
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Probabilistic Error Cancellation 

 

 learned from a quasi-probability 
distribution 

The ideal circuit is sampled from a quasi-
distribution of noisy ones  

Unbiased

Oideal = ∑
i

ηiO
noisy
i

ηi

van den Berg, E., Minev, Z.K., 
Kandala, A. 2023

Zero Noise Extrapolation 

Intentionally amplify the noise then fit and 
extrapolate. 

Biased, particularly for deep circuits

Kim, Y., Eddins, A., Anand S., 2024



Measurement overhead
How many additional shots do we need 
to achieve the same precision when 
performing error mitigation?
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Sampling overhead:                          Γ =
Nmore shots

Nshots
=

(ΔO)2
mitigated

(ΔO)2
noisy

Adapted from:  
Filippov, Maniscalco, García-Pérez, arXiv:2403.13542



Measurement overhead
How many additional shots do we need 
to achieve the same precision when 
performing error mitigation?

Algorithmiq

 ΓTEM ≈ (1 + ϵ)NL ≈ eϵNL

Section Title

   , ΓPEC ≈ (1 + 2ϵ)NL ≈ e2ϵNL  , ΓZNE ≈ (1 + 1.795ϵNL)2eϵNL

Confidential

Sampling overhead:                          Γ =
Nmore shots

Nshots
=

(ΔO)2
mitigated

(ΔO)2
noisy

Adapted from:  
Filippov, Maniscalco, García-Pérez, arXiv:2403.13542
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Measurement overhead TEM saturates the theoretical lower bound 
for unbiased error mitigation

Algorithmiq Algorithm Overview

Assumptions: 
• High weight Pauli observables 

• Dense NxL quantum circuits 

• Error/qubit/gate/layer = 0.16%

Adapted from:  
Filippov, Maniscalco, García-Pérez, arXiv:2403.13542

Lower Bound 
K. Tsubouchi, T. Sagawa, 
and N. Yoshioka,  
PRL 131, 210601 (2023)

• The minimum number of shots needed for 
unbiased estimation of a mitigated observable 
at fixed standard deviation grows exponentially 
with circuit size 

• Theoretical lower cost bound for sampling 
overhead shown as the dashed black line. 

• TEM saturates the lower bound!



Utility scale demonstration



Dynamical simulations of 
many-body quantum chaos 
on a quantum computer* 

*In collaboration with Ivano Tavernelli’s group at IBM Zurich, John Gold’s group at Trinity College Dublin  
and Abhinav Kandala’s team at IBM Yorktown.

— 
(91 qubits, 91 brickwork layers, 4092 CNOTs)



Why is this interesting?

Algorithmiq Utility scale demonstration

— 
Quantum dynamics of the 
kicked Ising model in a 
transverse field. 
A playground to study 
many body physics.

Interesting physics

— 
Quantum circuits 
comprised of two qubit 
gates that are unitary in 
both temporal and spatial 
directions

Dual Unitary 
circuits

A benchmark for 
quantum simulation 

— 
Analytical solution exist for 
specific points in 
parameter space which can 
be used as a benchmark.

— 
Solvable points can be 
used to further 
calibrate noise models 

Noise model 
calibration

— 
These pieces combine to 
provide an excellent test 
bed for noise mitigation 
methods!

Ideal for showcasing 
error mitigation 

2 3 4 51
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Ising:                 HI = J
N−2

∑
n=0

σz
nσz

n+1 + h
N−1

∑
n=0

σz
n Kick:                 HK = b

N−1

∑
n=0

σx
n

Hamiltonian:                      ,      Floquet:  HKI(t) = HI + ∑
m∈Z

δ(t − m)HK UKI = e−iHKe−iHI

Observable of interest:   

Infinite temperature autocorrelation function:    ,    Cn(t) = Tr[ ̂ρ∞X̂0(0)X̂n(t)] ̂ρ∞ =
I

2N
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Circuit components Floquet unitaries implemented as two qubit 
gates in a brickwork layout.

Floquet Unitary:  

          UKI = e−iHKe−iHI → e−ib∑ σxe−iJ∑ σzσze−ihσz

= e−ibσx

= e−ihσz

= e−iJσz⊗σz

Un,n+1 = Dual unitary for J = b =
π
4



Algorithmiq Utility scale demonstration

Circuit components Floquet unitaries implemented as two qubit 
gates in a brickwork layout.

One time step: 

U1 = UevenUodd →

                        Ueven = ∏
neven

Un,n+1 Uodd = ∏
nodd

Un,n+1

= e−ibσx

= e−ihσz

= e−iJσz⊗σz



Dual unitary
For dual unitary brickwork circuits 
the signal will propagate along the 
light cone

Algorithmiq Utility scale demonstration

Information spreading for 
any brickwork circuit:  

C(t) = 0 for t<n

Dual unitary circuits limit 
information spread in the 

spatial direction 
C(t) = 0 for t>n

Signal propagates along 
the light cone only
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Algorithmiq Utility scale demonstration

Integrable 

Clifford Gates 

Exact solution:  

 C(t) = {1, if t = n
0, if otherwise

Non-integrable 

Non-Clifford 

Exact solution: 

C(t) = {[cos(2h)]t, if t = n
0, if otherwise

Non-integrable 

Non-Clifford 

No exact solution

Dual Unitary Non dual unitary



Experimental results 
run on IBM Eagle



Autocorrelation function at the 
dual unitary point

Algorithmiq Experimental results

Dual Unitary: b = J = /4 

Non-integrable 

Exact solution: 

π

C(t) = {[cos(2h)]t, if t = n
0, if otherwise

(1) 

• Clifford for h=0. Used to calibrate the noise 
model parameters adjusted to fit the 
mitigated curve. 

(2) 

• TEM mitigated results match the analytical 
decay for varying system sizes. 

• Imperfections directly linked to imperfections 
in noise characterisation. 

(3) 

• Validation: decay rates of the mitigated 
results match theory

(1) (2) (3)



Moving away from the dual 
unitary point

Algorithmiq Experimental results

Not dual unitary 

Non-integrable 

No exact solution

N
 =

 5
1

t = 25

N
 =

 7
1

t = 35

N
 =

 9
1

t = 45

No analytical solution exists nor brute force 
solution so therefore we must compare 
different methods for simulation: 

• Quantum + TEM 

• TN Schrödinger 

• TN Heisenberg 

Accurate recovery of near zero signal that is 
indistinguishable from background statistical 
noise

Computing expectation values  for  ⟨X̂t(t)⟩ t = (N − 1)/2



Impact of noise model 
discrepancies

Algorithmiq Experimental results

• Tensor Network simulations using the noise 
model provided can show us the accuracy of 
the model when compared to the noisy signal 
obtained from hardware.  

• Where there is a mismatch in noisy signal to 
noisy simulation, there will be a comparable 
mismatch between the TEM result and the 
ideal curve. 

We are only as good as our noise 
characterisation

71 qubit dual unitary experiment, h = 0.05



Sampling overhead

Algorithmiq Experimental results

When we are considering system sizes where the 
numbers of shots are in the tens of millions, these 
factors are prohibitive.  



Sampling overhead

Algorithmiq Experimental results

Exponent blows up for fixed error rate as circuit area 
increases while it gets easier to simulate classically 
as everything approaches the maximally mixed 
state. 

  ~ Γ eϵNL

Fix 



Sampling overhead

Algorithmiq Experimental results

Larger circuit sizes are enabled as hardware 
improves.  

Quantum + EM becomes favorable as things get 
more difficult to simulate classically. 

  ~ Γ eϵNL

Fix 

lim
ϵ→0



Noise agnostic error mitigation for specific problems 
(ground state simulation) may be a viable alternative. 

This could be accessible for complex circuits without 
repetition (Chemistry) where noise learning would be 

prohibitively hard 

Could be combined with intermediate-scale QEC to 
mitigate the residual errors 

 



Conclusion



Noise remains a prominent challenge to overcome and 
development of new methods for noise mitigation will have 

critical impact in the evolution of the field.

Combining quantum computing with HPC is 
advantageous for increasing the reach of error mitigation 

methods.



The results shown highlight the utility of quantum 
simulation, even on pre-fault tolerant devices for 

studying models of physical interest  



TEM can be advantageous with respect to purely classical 
tensor network methods, given that the tensor network in 

TEM does not need to account for the state of the 
quantum computer, nor the evolved observable in the 

Heisenberg picture



Instead, the tensor network represents the inverse of the 
noise channel in the quantum processor, which approaches 

identity for decreasing noise.

Therefore, the classical computational complexity 
needed by TEM also decreases, hence enabling us to 

obtain accurate results with smaller computational cost 
than a classical-only tensor network approach.



A rethinking of the way we do things is necessary to 
discover how best to combine quantum error mitigation 

with error correction
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