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Bringing quantum to life

Aurora
Full-stack software platform for drug design and
discovery

0 |
| I I Healthcare Chemistry Other verticals
u r ‘ S S ‘ O ﬂ Life sciences

We develop guantum sottware that
makes guantum computers usetul.
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We use the unparalleled power of quantum computers &
Tor the Tast and efficient cure and prevention of diseases. g
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We prioritise combining guantum
computing with tensor networks and

A hyb ri d ap p rOaCh high-performance computing (HPC)

Informationally complete measurements and tensor networks

Quantum computers -+ Tensor networks on HPC
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We develop methods built around
informationally complete positive

A hyb ri d ap p rOaCh operator value measurements

Informationally complete measurements and tensor networks

I

Quantum computers Tensor networks on HPC

|
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Informationally complete generalised
measurements (IC-POVMS)
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A Nyorid approach

We develop methods built around
informationally complete positive
operator value measurements

Informationally complete measurements and tensor networks

Tensor networks on HPC

I

Quantum computers

|
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Informationally complete generalised
measurements (IC-POVMs)

e Provide shot efficient, unbiased
estimators of the quantum state

e Can be optimised to extract more
iInformation

e Allow for linear transformations in
post-processing
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Scalable tensor network
based error mitigation for
near term quantum
computing, Filioppov 2023

Algorithm review
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We build a tensor network that
encodes the noise inverse map.

A scalable tensor network based error mitigation for near term quantum computing

ideal inverted noisy circuit : ideal circuit
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e Noise mitigation map in software post-
processing

e [ensor network noise mitigation method,
computationally easier as the noise
decreases

e A tensor network encodes the inverse of
the noise map (cheaper than simulating
the whole circuit)

+

Noise Assumptions:
e Not necessarily local

e Small (consistent with existing hardware and
constantly improving)

« Known/Efficiently representable
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. . We contract from the middle outward,
M ‘d d L@‘O U_t CO thraC_tl O ﬂ building our noise inverse map as a

matrix product operator
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T . Untreated, the bond dimension of the
rU ﬂ Ca-t‘ O ﬂ MPOs would grow exponentially in the

number of layers.

The MPO is compressed after each iteration
either to a fixed bond dimension or to a
desired precision.

This is achievable using the smallest singular
values in the canonical representation of the
MPO or by variational means
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e MPO compression error is at most linear in €

e MPO compression cost is cubic in bond dimension
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Noise characterisation

Capture gate noise, crosstalk and
decoherence using noise characterisation

Represent the noise channel with a sparse Pauli
Lindbladian (SPL) noise model

N=e? |, L= Z/li(PipP; —p)

van den Berg, E., Minev, Z.K., Kandala, A. 2023
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Noise characterisation

Capture gate noise, crosstalk and
decoherence using noise characterisation

Represent the noise channel with a sparse Pauli
Lindbladian (SPL) noise model
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Noise characterisation

Capture gate noise, crosstalk and
decoherence using noise characterisation

Represent the noise channel with a sparse Pauli
Lindbladian (SPL) noise model

Pauli twirling employed to bring into Pauli form
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Each layer in the
circuit is
accompanied by
it's own learned
noise channel
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Crucial for current state of the art
O Name a few
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O nam e a _Fe\/\/ Crucial for current state of the art

noise mitigation

Probabilistic Error Cancellation

ideal __ (HNOIsY
O™ = Z 0]
i

n; learned from a quasi-probability
distribution

The ideal circuit is sampled from a quasi-
distribution of noisy ones

Unbiased

van den Berg, E., Minev, Z.K.,
Kandala, A. 2023
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Crucial for current state of the art
O Name a few

Probabilistic Error Cancellation Zero Noise Extrapolation

ideal __ noisy
Odeal = 3" n,0 .
; E(c,A) 0
;
0
n; learned from a quasi-probability - y
. . . E('.?-A] [ 3
distribution E: 2
S
5
&
3 E*
—»>
The ideal circuit is sampled from a quasi- | 6 &
Noise amplification/Stretch factor

distribution of noisy ones
Intentionally amplify the noise then fit and

extrapolate.

Unbiased
van den Berg, E., Minev, Z.K.,
Kandala, A. 2023 Kim, Y., Eddins, A., Anand S., 2024

Biased, particularly for deep circuits
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Confidential

NVeasurement overnead

How many additional shots do we need
to achieve the same precision when
performing error mitigation?

N

[ — __more shots

N shots

Sampling overhead:

(A0),

mitigated

(A0)

2

noisy

Adapted from:
Filippov, Maniscalco, Garcia-Perez, arXiv:2403.1354°
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NVeasurement overnead

How many additional shots do we need
to achieve the same precision when
performing error mitigation?

N, (A0),

Sampling overhead: I — _more shots mitigated
| - B 2
Nshots (A O)noisy

T,ve ~ (14 1.795eNLY? e | Topr~ (1 + 20~ e* M | Top = (1 + )M x oM

Adapted from:
Filippov, Maniscalco, Garcia-Perez, arXiv:2403.1354°
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Neasurement overhead

TEM saturates the theoretical lower bound
for unbiased error mitigation
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Circuit area (NxL)

Assumptions:
e« High weight Pauli observables

e Dense NxL quantum circuits

e Error/qubit/gate/layer = 0.16%

Adapted from:
Filippov, Maniscalco, Garcia-Péerez, arXiv:2403.13542
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Neasurement overhead

TEM saturates the theoretical lower bound
for unbiased error mitigation
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§ 107}

3 TEM
2 108!
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v 103

0 2000 4000 6000 8000 10000

Circuit area (NxL)

Assumptions:
e« High weight Pauli observables

e Dense NxL quantum circuits

e Error/qubit/gate/layer = 0.16%

e The minimum number of shots needed for
unbiased estimation of a mitigated observable
at fixed standard deviation grows exponentially
with circuit size

Adapted from:
Filippov, Maniscalco, Garcia-Péerez, arXiv:2403.13542
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TEM saturates the theoretical lower bound

M eaS U re m e th O\/e rh ead for unbiased error mitigation

Assumptions:
1012 _ e« High weight Pauli observables
-c?s e Dense NxL quantum circuits
<
o 109‘ e Error/qubit/gate/layer = 0.16%
>
O
D 16 -
< 10° e The minimum number of shots needed for
g- unbiased estimation of a mitigated observable
® 103 Lower Bound at fixed standard deviation grows exponentially
0p - K. Tsubouchi, T. Sagawa, : .
and N. Yoshioka. with circuit size
PRL 131, 210601 (2023)
1= . - o e Theoretical lower cost bound for sampling
0 2000 4000 6000 8000 10000 overhead shown as the dashed black line.

Circuit area (NxL)

Adapted from:
Filippov, Maniscalco, Garcia-Péerez, arXiv:2403.13542
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Utility scale demonstration



Trinity College Dublin
Colaiste na Trionoide, Baile Atha Cliath
The University of Dublin

(X algorithmiq

Dynamical simulations of
many-noady guantum chaos
on a quantum computer”

(91 qubits, 91 brickwork layers, 4092 CNOTs)

*In collaboration with Ivano Tavernelli's group at IBM Zurich, John Gold’s group at Trinity College Dublin
and Abhinav Kandala's team at IBM Yorktown.
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Utility scale demonstration

Why Is this interesting?

&

Interesting physics

Quantum dynamics of the
kicked Ising model in a
transverse field.

A playground to study
many body physics.

2

Dual Unitary
Clrcuits

Quantum circuits
comprised of two qubit
gates that are unitary in
both temporal and spatial
directions

3

A benchmark for
quantum simulation

Analytical solution exist for
specific points Iin
parameter space which can
be used as a benchmark.

(4

Noise model
calibration

Solvable points can be
used to further
calibrate noise models

|deal for showcasing
error mitigation

These pieces combine to
provide an excellent test
bed for noise mitigation
methods!
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Ising spin chain with periodic transverse
field kick

NVoadel

voo & &
Ising: HI=JZG,§0'5+1 hZG,f Kick: HK=bZG,’f % | % | % | % .
n=0 n=0 n=0
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Ising spin chain with periodic transverse
field kick

NVoadel

N-2 T+ ¢ T
Ising: HI=JZG,§O',§+1 hZag Kick: H =bzg;§ b & & & & & & ¢
n=0 n=0 n=0
Hamiltonian: Hg(t) = H,; Z o(t — m)Hy
me/
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Confidential

NVoadel

Ising spin chain with periodic transverse
field kick

Ising:

Hamiltonian:

N-2
H, = JZ 0,0 4
n=0

N—1

h) o Kick
n=0
Y 8t —mHy
mez

N-1
He=b ) o
n=0

Floquet: Ug; = e
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Confidential

NVoadel

Ising spin chain with periodic transverse
field kick

N-2
Ising: H, = JZ 0,0 4
n=0
Hamiltonian: Hg (1) = H;

Observable of interest:

Infinite temperature autocorrelation function: C, (f) = Tr[ﬁoo)A(O(O))A(n(t)] Py = —

N—-1

h Z o Kick:
n=0
Y 8t —mHy
mez

N-1
He=b ) o
n=0

Floquet: Ug; = e

IN
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Circuit components

Floguet unitaries implemented as two qubit
gates in a brickwork layout.

Floguet Unitary:
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Floguet unitaries implemented as two qubit

Ci rCU i_t CO m pO ﬂ e thS gates in a brickwork layout.

Flogquet Unitary: i,

h
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Floguet unitaries implemented as two qubit

Ci rCU i_t CO m pO ﬂ e thS gates in a brickwork layout.

Flogquet Unitary: \L

h
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h _ )-k bJ_\ J[ h ]
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Floguet unitaries implemented as two qubit

Ci rCU i-t CO m pO ﬂ e ﬂtS gates in a brickwork layout.

Ueven — I I Un,n+1 Uodd — I I Un,n+1
n Rodd

even

T

alslnpen—
One time step: _ _7‘.’ Jh_\.,_, h —

{ﬂ_:l: 7 J. g ) T | o iJo®0
u,=u,,U,.— 7 J : J : ::gﬁ 1 J
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Utility scale demonstration

Dual unrtary

For dual unitary brickwork circuits

the signal will propagate along the
light cone

=1 =
H
- _
—
1
Hi
1 =
1
| m
bl

time ¢ time f time f
E i t>n A
- \'\ (1) ~ = \\‘
= \ 5 = \\\
:_E_, = ,_:i "N %
1t < n . o (2) N ’ ( ;) \\
! . ) \

T

Information spreading for
any brickwork circuit:

C(t) = O for t<n

\ T

the light cone only

Dual unitary circuits limit
iInformation spread in the

spatial direction
C(t) = O for t>n

Signal propagates along

k l k [
ok = T+ @0 =JI
i j i J
U =U0U=1
N P
O0t=00=1
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‘nree regimes
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Nree regimes

Integrable
Clifford Gates

Exact solution:

C(t) = {1, ift=n

0, if otherwise

Dual Unitary
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Nree regimes

Integrable
Clifford Gates

Exact solution:

C(t) = {1, ift=n

0, if otherwise

,

£

[
]=b=z, h+#0

Non-integrable
Non-Clifford

Exact solution:

C(t) = {[cos(2h)]t, ift =n

0, if otherwise

Dual Unitary
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Nree regimes

Integrable
Clifford Gates

Exact solution:

C(t) = {1, ift=n

0, if otherwise

,

.4

[
]=b=z, h+#0

Non-integrable
Non-Clifford

Exact solution:

C(t) = {[cos(2h)]’, ift =n

0, if otherwise

b #L  R=%0
2’ 2’

Non-integrable
Non-Clifford

No exact solution

Dual Unitary

Non dual unitary
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.
Autocorrelation function at the 4 ouat Ui ==

Non-integrable

dual unitary point N T A

0, it otherwise

$ unmitigated - unmitigated fit ¥ TEM mitigated --- TEM fit — exact dual unitary theory
' h=0 ' h = 0.05 ' h =01 ' h =0.15 ' _ ' _
¢ = 00} 1
& H T A S *\’\*\“ (l)
[ &g | & = | e Clifford for h=0. Used to calibrate the noise
gz Tre >, —0-LFE  TEM mitigated - model parameters adjusted to fit the
0.0}, | . _ — | 1 , | g g umpere 1] mitigated curve.
0 10 20 0 10 20 0 10 20 0 10 20 = 0.00 0.05 0.10 0.15 ()
PR ) M- E o.o-#—ﬁ.\"‘\' -
’lf ., % . e TEM mitigated results match the analytical
w 05 S 6 S . | decay for varying system sizes.
= e ;_/: —U.lr . . . . .
< ol B S o Imperfections directly linked to imperfections
0 20 0 ~ 0.00 0.05 0.10 0.15 INn noise characterisation.
1.0 pee———— = E 0.0} * | | -
- s 5 oof (3)
W osh S e Validation: decay rates of the mitigated
< .y N >, —0.1 results match theory
O .0 S
0.0, . . A — . . . 1. . . . . . . . . < . . . :
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 = 0.00 0.05 010 0.15
time ¢ time ¢ time ¢ time ¢ h

(1) (2) (3)
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Experimental results

NMoving away Trom the dual
Jnrtary point

1

Not dual unitary

Non-integrable

No exact solution

¥ mitigated ¢ unmitigated -+- TN simulation (Heisenberg) -+ TN simulation (Schrodinger)
h = h = 0.05 h =0.1 h =0.15
Loy yo }*::I"n, woo Yoo, v oo Y.
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i —0.1 _ 0.1 —0.1 0.0 0.1 —0.1 0.0 0.1 —0.1 0.0 0.1
1.0 '
L Tew T T .. 1 T
:y // \\X ~..' :y A\ . .y...- “’ ----- v
<>< . K . :,.// SO . ’,t\\\ E
/ ‘\*\ i’ \l\ V 3 - X\ - N Vool
~—— ,./: X A ,./ X\\\i .,- /// \\\I.... x I T v
= ‘ o 5 S | e e T
;-x S © = b= =) * ’,"g T el
0.0 = /// ? © x T %/z’? < % T 2’,/;‘ © © X 3 1 ﬁ/,x & S b. d
’ - - .
—t .'. I . , g'. . . . . . . { { {
i —0.1 0.1 —0.1 0.0 0.1 —0.1 0.0 0.1 —0.1 0.0 0.1
10 \ ..... v ‘_‘.V.. ¥
yx“‘,/' RS v N T.
o~ R ., - / NAA . ‘. 3
= - X\\\ N PTLS. v S0
<>§h 0.5 /i N : f X\\.,n X Ao —
5 . B < X S
: ‘\ K4 \‘_. : ’/ So ‘e, K V‘ .
~ s TTsa S X;’;-;-;X S }\ Y.
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s s s s
b T b 1 b A b 4

No analytical solution exists nor brute force
solution so therefore we must compare
different methods for simulation:

¢ Quantum + TEM

e TN Schrodinger

e TN Heisenberg

Accurate recovery of near zero signal that is
indistinguishable from background statistical
noise

Computing expectation values ()A(t(t)) fort=(INN—-1)/2
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Experimental results

'mpact or noise model
discrepancies

We are only as good as our noise
characterisation

100 L

C(t)

10!

| —— Noisy tensor network simulation

L 1 e ™ = -
—————

---- Exact dual unitary theory
. § * Unmitigated
¥+ TEM mitigated

L
-
........
..
v

0 5 10 15 20

0.200

0.175¢}
0.150 ¢
0.125¢
Q? 0.100 ¢
0.075 ¢
0.050
0.025

0.000 ¢

=== Ry = Ry

0.000 0025

0.100

Ry

e [ensor Network simulations using the noise
model provided can show us the accuracy of
the model when compared to the noisy signal
obtained from hardware.

e \Where there is a mismatch in noisy signal to
noisy simulation, there will be a comparable
mismatch between the TEM result and the
ideal curve.

(1 qubit dual unitary experiment, h = 0.05
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Sampling overhead

Nqubits|| B |I'pec/T'teEM |I'zne/T'TEM
ol 3.1 9.6 20.0
71 7.1 H0.4 64.6
91 22.7 515 149

When we are considering system sizes where the
numbers of shots are in the tens of millions, these
factors are prohibitive.




Algorithmig Experimental results

Sampling overhead

Fix
\ Exponent blows up for fixed error rate as circuit area
1—1 gNL increases while it gets easier to simulate classically
~ € as everything approaches the maximally mixed

state.




Algorithmig Experimental results

Sampling overhead

Fix
\ Larger circuit sizes are enabled as hardware
Improves.

lim [ ~ ¢“VE

c—( Quantum + EM becomes favorable as things get

more difficult to simulate classically.




Noise agnostic error mitigation Tor specific problems
(ground state simulation) may be a viable alternative.

This could be accessible Tor complex circuits without
repetition (Chemistry) where noise learning would be
orohibitively hard

Could be combined with intermediate-scale QEC to
mitigate the residual errors




Conclusion




Noise remains a prominent chaltenge to overcome and
development of new methods tor noise mitigation will have
critical iImpact in the evolution ot the Tield.

Combining guantum computing with HPC is
advantageous Tor increasing the reach of error mitigation
methods.
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e results shown highlight the

S|

mulation, even on pre-tault to

utility ot quant

erant devices -

studying models of physical interest

U
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TEM can be advantageous with respect to purely classical

tensor network methods, given that the tensor network in

TEM does not need to account Tor the state of the

guantum computer, nor the evolved observable in the
Helsenberg picture




INnstead, the tensor network represents the ir

nolse channel In the quantum
identity Tor dec

verse Of t

Orocessor, WNic

easing Nolse.

N approac

I heretore, the classical computational complexity
needed py M also decreases, hence enabling us to
obtain accurate results with smaller computational cost

than a classical-only tensor network approacn.

Al
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A rethinking of the way we do things Is necessary to
discover how pbest to combine quantum error mitigation
with error correction
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