
Error Mitigation
From theory to performant code

Sam Ferracin

Backend Software Engineer

IBM Quantum

WERQSHOP

New York, USA

July 17, 2025



Error Mitigation: A field of growing interest

On arXiv in June 2022, many improvements 

since:

• More efficient noise learning techniques.

• More efficient PEC sampling, e.g. light cones.

• RC on FPGA.
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None of this matters 

if our protocols do not become

performant software.
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Efficient “on paper” vs performant software
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In summary.

• Introduces “Pauli Error Amplification”, or PEA.

• Shows PEA-mitigated results for a circuit with 

2’880 two-qubit gate.

• Runtime: ~112hrs~2.2hrs[1] Kim, Y. and others, Evidence for the utility of 

quantum computing before fault tolerance, Nature 618 

(2023).



From “on paper” efficient to performant code
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What does it take to turn a good error-mitigation paper 

    into performant software?

In this talk.

• Section I. Software performance.

                    - Achieving a 50x speedup.

• Section II. Software capabilities.

     - The evolution of primitives.



Patterns for performance.

Achieving a 50x speedup.
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The CLOPS benchmark
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[1] Wack, A. and others, Quality, Speed, and Scale: three key attributes to measure the performance of near-term quantum computers, arXiv:2110.14108.
[2] Check it out at https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops

CLOPS, or “Circuit Layer Operations Per Second”, see Ref. [1].

• Measures the steady throughput of parametrized, HW efficient, utility-scale circuits (100 qubits x 100 layers).

• Measured regularly and reported on the cards.

10
0 

qu
b

it
s

100 layers

https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops


CLOPS progress
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112 hours 8.4 hours 2.2 hours 64 hours 
Time to run the 

utility experiment



How to achieve a 50x speedup
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User space.
• Provides circuit.

Primitives.
• Dispatches to compiler.

Compiler.
• Maps circuits to 

instructions streams 
for control electronics.

Control electronics.
• Executes instructions.
• All circuits loaded run at 

full speed, no 
restart/reload required.

User space.
• Provides circuit.
• Specifies desired twirling 

and mitigation strategy.

Primitives.
• Prepares a set of circuits.
• Dispatches to compiler.

Patterns for performance:

1. Parallelization.
Increase classical work and hide that behind quantum work.

• Compiler.                                                           [utility experiment → 64hrs].

• Sampler and Estimator leverage this parallelism for you.

• Many circuits in one job better than one circuit in many jobs.

• Primitives.

• Run more jobs from the queue, potentially from different clients.

One template + parametersMany circuits

Orchestration code

Orchestration code

Orchestration code



How to achieve a 50x speedup
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User space.
• Provide circuit.

Primitives.
• Dispatch to compiler.

Compiler.
• Map circuits to 

instructions streams 
for control electronics.

Control electronics.
• Executes instructions.
• All circuits loaded run at 

full speed, no 
restart/reload required.

User space.
• Provide circuit.
• Specify desired twirling 

and mitigation strategy.

Primitives.
• Prepare a set of circuits.
• Dispatch to compiler.

Patterns for performance:

1. Parallelization.
Increase classical work and hide that behind quantum work.

2. Parametrization.
Multiple circuits can be compiled at the cost of one.

• Compiler.                                                           [utility experiment → 8.4hrs].

• Compiler knows how to compile parametrized circuits.

• Stitches the parameters only before sending to control 
electronics.

Orchestration code

Orchestration code

Orchestration code



How to achieve a 50x speedup
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User space.
• Provide circuit.

Primitives.
• Dispatch to compiler.

Compiler.
• Map circuits to 

instructions streams 
for control electronics.

Control electronics.
• Executes instructions.
• All circuits loaded run at 

full speed, no 
restart/reload required.

User space.
• Provide circuit.
• Specify desired twirling 

and mitigation strategy.

Primitives.
• Prepare a set of circuits.
• Dispatch to compiler.

Patterns for performance:

1. Parallelization.
Increase classical work and hide that behind quantum work.

2. Parametrization.
Multiple circuits can be compiled at the cost of one.

3. Optimization.
Clean code runs faster.

• Started with rewriting parts of the lower level of the stack in Rust.

• Continued with rewriting the compiler gen3 entirely in Rust.

More details in Andrew Wack’s QDC talk:

https://www.youtube.com/watch?v=uLuDyrJIvO4

Orchestration code

Orchestration code

Orchestration code
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CLOPS progress
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112 hours 8.4 hours 2.2 hours 64 hours 
Time to run the 

utility experiment



Software capabilities.

The evolution of primitives.
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The evolution of the primitives.
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ZNE options

• Amplifier. PEA

• Factors. [1, 1.2, 1.4]

• Extrapolator. Linear.

0

None

1 2

3

TREX

PEC

PEA

Phase 1. Fully-automated mitigation.

Where we mitigate your circuits for you.

• Users selects resilience levels.

• Server does all the heavy lifting.

Phase 2. Guided control.

Where you can tweak some parameters.

• Resilience levels still supported.

• Additionally, users can define 
custom options to meet their needs.

*************************

* ZNE options:

*  mitigation: PEA

*  factors: [1, 1.2, 1.4]

*  extrapolator: linear

*************************



Adding a new feature.
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New feature request. 

➢ PEC with shaded lightcones [1]. 

Reactions.

• What are we talking about?

• Should this be added on top of PEC?

• Should we just push back?

[1] Eddins, A. and others, Lightcone shading for classically accelerated quantum error
        mitigation, arXiv:240904401.

Read 
one paper

Plan 
implementation

Implement
the specific 
technique

Offer as a feature 
flag



A healthy development cycle.
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Read many papers 
(lit review)

Work with 
experts

Discover the 
building blocks

Integrate and 
release



From features to building blocks
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Pauli twirling. Advanced twirling.

Changing basis.

Noise injection. Opacity filters.

Dynamical decoupling.

Prepare |Y⟩ Measure 𝑋

𝐶0

𝐶1

𝐶2

𝐶0
↑

𝐶3

Twirling in practice.

𝑃𝑃† 𝑃′† 
  travels    

    through cX

Twirling on paper.

Conceptually, all these capabilities are described 
by virtual gates that:

• Are:

• generated somewhere.

• propagated through gates.

• collected by some element of a template 
circuit.

DD Sequence

• Can be of different types, e.g., Pauli, U2, one-
qubit Clifford, …



Working towards a declarative execution
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A new intermediate representation (IR)

• Boxes introduced in Qiskit 2.0.

• Annotations introduced in Qiskit 2.1.

• Main ideas:

• Use boxes to isolate subcircuits.

• Use annotions to add virtual gates to boxes.

• More details in Qiskit/RFC [1].

[1] https://github.com/Qiskit/RFCs/blob/master/0022-circuit-block.md 

𝑃𝑃†
𝑃† travels

𝑃 collected
in place

Example. Pauli-twirled box. 



Working towards a declarative execution
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A new intermediate representation (IR)

• Boxes introduced in Qiskit 2.0.

• Annotations introduced in Qiskit 2.1.

• Main ideas:

• Use boxes to isolate subcircuits.

• Use annotions to add virtual gates to boxes.

• More details in Qiskit/RFC [1].

[1] https://github.com/Qiskit/RFCs/blob/master/0022-circuit-block.md 

An interpreter to convert from new IR to existing IR

• Returns:

• A template circuit with parametrized gates.

• A “dag” object to sample random parameters.



Using DAGs to improve performance
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DAG unlocks new patterns for performance:

• Generating params on-the-fly to keep HW busy.

• Execute until target precision is reached.

DAG 
generate 
params

QPU consumes 
params

time 

QPU consumes 
params

DAG 
generate 
params

QPU consumes 
params

DAG 
generate 
params

precision 
reached

Dag needs to be faster than HW.

• Internal implementation as directed acyclic graph.

𝑃𝑃† 𝑃𝑃†𝑃𝑃†

𝑐𝑋 0, 1 𝑐𝑋 1, 2𝑐𝑋(1, 2)

𝑐𝑋 2, 3
Propagate

Collect

Generate



The evolution of the primitives.
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ZNE options

• Amplifier. PEA

• Factors. [1, 1.2, 1.4]

• Extrapolator. Linear.

0

None

1 2

3

TREX

PEC

PEA

*************************

* ZNE options:

*  mitigation: PEA

*  factors: [1, 1.2, 1.4]

*  extrapolator: linear

*************************

Phase 1. Fully-automated mitigation.

Where we mitigate your circuits for you.

• Users selects resilience levels.

• Server does all the heavy lifting.

Phase 2. Guided control.

Where you can tweak some parameters.

• Resilience levels still supported.

• Additionally, users can define 
custom options to meet their needs.

Phase 3. Declarative execution.

Where users get near-complete control.

• IR to reason about virtual gates.

• The primitives provide building 
blocks to write new functionalities.

• New paths to performance to 
explore and benefit from.



Conclusions.
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What does it take to turn a good error-mitigation paper into 

performant software?
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