
Error Mitigation
From theory to performant code

Sam Ferracin

Backend Software Engineer

IBM Quantum

WERQSHOP

New York, USA

July 17, 2025

Error Mitigation: A field of growing interest

On arXiv in June 2022, many improvements

since:

• More efficient noise learning techniques.

• More efficient PEC sampling, e.g. light cones.

• RC on FPGA.

2

None of this matters

if our protocols do not become

performant software.

3

Efficient “on paper” vs performant software

4

In summary.

• Introduces “Pauli Error Amplification”, or PEA.

• Shows PEA-mitigated results for a circuit with

2’880 two-qubit gate.

• Runtime: ~112hrs~2.2hrs[1] Kim, Y. and others, Evidence for the utility of

quantum computing before fault tolerance, Nature 618

(2023).

From “on paper” efficient to performant code

6

What does it take to turn a good error-mitigation paper

 into performant software?

In this talk.

• Section I. Software performance.

 - Achieving a 50x speedup.

• Section II. Software capabilities.

 - The evolution of primitives.

Patterns for performance.

Achieving a 50x speedup.

7

The CLOPS benchmark

8

[1] Wack, A. and others, Quality, Speed, and Scale: three key attributes to measure the performance of near-term quantum computers, arXiv:2110.14108.
[2] Check it out at https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops

CLOPS, or “Circuit Layer Operations Per Second”, see Ref. [1].

• Measures the steady throughput of parametrized, HW efficient, utility-scale circuits (100 qubits x 100 layers).

• Measured regularly and reported on the cards.

10
0

qu
b

it
s

100 layers

https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops
https://github.com/qiskit-community/qiskit-device-benchmarking/tree/main/qiskit_device_benchmarking/clops

CLOPS progress

9

112 hours 8.4 hours 2.2 hours 64 hours
Time to run the

utility experiment

How to achieve a 50x speedup

10

User space.
• Provides circuit.

Primitives.
• Dispatches to compiler.

Compiler.
• Maps circuits to

instructions streams
for control electronics.

Control electronics.
• Executes instructions.
• All circuits loaded run at

full speed, no
restart/reload required.

User space.
• Provides circuit.
• Specifies desired twirling

and mitigation strategy.

Primitives.
• Prepares a set of circuits.
• Dispatches to compiler.

Patterns for performance:

1. Parallelization.
Increase classical work and hide that behind quantum work.

• Compiler. [utility experiment → 64hrs].

• Sampler and Estimator leverage this parallelism for you.

• Many circuits in one job better than one circuit in many jobs.

• Primitives.

• Run more jobs from the queue, potentially from different clients.

One template + parametersMany circuits

Orchestration code

Orchestration code

Orchestration code

How to achieve a 50x speedup

11

User space.
• Provide circuit.

Primitives.
• Dispatch to compiler.

Compiler.
• Map circuits to

instructions streams
for control electronics.

Control electronics.
• Executes instructions.
• All circuits loaded run at

full speed, no
restart/reload required.

User space.
• Provide circuit.
• Specify desired twirling

and mitigation strategy.

Primitives.
• Prepare a set of circuits.
• Dispatch to compiler.

Patterns for performance:

1. Parallelization.
Increase classical work and hide that behind quantum work.

2. Parametrization.
Multiple circuits can be compiled at the cost of one.

• Compiler. [utility experiment → 8.4hrs].

• Compiler knows how to compile parametrized circuits.

• Stitches the parameters only before sending to control
electronics.

Orchestration code

Orchestration code

Orchestration code

How to achieve a 50x speedup

12

User space.
• Provide circuit.

Primitives.
• Dispatch to compiler.

Compiler.
• Map circuits to

instructions streams
for control electronics.

Control electronics.
• Executes instructions.
• All circuits loaded run at

full speed, no
restart/reload required.

User space.
• Provide circuit.
• Specify desired twirling

and mitigation strategy.

Primitives.
• Prepare a set of circuits.
• Dispatch to compiler.

Patterns for performance:

1. Parallelization.
Increase classical work and hide that behind quantum work.

2. Parametrization.
Multiple circuits can be compiled at the cost of one.

3. Optimization.
Clean code runs faster.

• Started with rewriting parts of the lower level of the stack in Rust.

• Continued with rewriting the compiler gen3 entirely in Rust.

More details in Andrew Wack’s QDC talk:

https://www.youtube.com/watch?v=uLuDyrJIvO4

Orchestration code

Orchestration code

Orchestration code

https://www.youtube.com/watch?v=uLuDyrJIvO4
https://www.youtube.com/watch?v=uLuDyrJIvO4
https://www.youtube.com/watch?v=uLuDyrJIvO4
https://www.youtube.com/watch?v=uLuDyrJIvO4
https://www.youtube.com/watch?v=uLuDyrJIvO4

CLOPS progress

13

112 hours 8.4 hours 2.2 hours 64 hours
Time to run the

utility experiment

Software capabilities.

The evolution of primitives.

14

The evolution of the primitives.

15

ZNE options

• Amplifier. PEA

• Factors. [1, 1.2, 1.4]

• Extrapolator. Linear.

0

None

1 2

3

TREX

PEC

PEA

Phase 1. Fully-automated mitigation.

Where we mitigate your circuits for you.

• Users selects resilience levels.

• Server does all the heavy lifting.

Phase 2. Guided control.

Where you can tweak some parameters.

• Resilience levels still supported.

• Additionally, users can define
custom options to meet their needs.

* ZNE options:

* mitigation: PEA

* factors: [1, 1.2, 1.4]

* extrapolator: linear

Adding a new feature.

16

New feature request.

➢ PEC with shaded lightcones [1].

Reactions.

• What are we talking about?

• Should this be added on top of PEC?

• Should we just push back?

[1] Eddins, A. and others, Lightcone shading for classically accelerated quantum error
 mitigation, arXiv:240904401.

Read
one paper

Plan
implementation

Implement
the specific
technique

Offer as a feature
flag

A healthy development cycle.

17

Read many papers
(lit review)

Work with
experts

Discover the
building blocks

Integrate and
release

From features to building blocks

18

Pauli twirling. Advanced twirling.

Changing basis.

Noise injection. Opacity filters.

Dynamical decoupling.

Prepare |Y⟩ Measure 𝑋

𝐶0

𝐶1

𝐶2

𝐶0
↑

𝐶3

Twirling in practice.

𝑃𝑃† 𝑃′†
 travels

 through cX

Twirling on paper.

Conceptually, all these capabilities are described
by virtual gates that:

• Are:

• generated somewhere.

• propagated through gates.

• collected by some element of a template
circuit.

DD Sequence

• Can be of different types, e.g., Pauli, U2, one-
qubit Clifford, …

Working towards a declarative execution

19

A new intermediate representation (IR)

• Boxes introduced in Qiskit 2.0.

• Annotations introduced in Qiskit 2.1.

• Main ideas:

• Use boxes to isolate subcircuits.

• Use annotions to add virtual gates to boxes.

• More details in Qiskit/RFC [1].

[1] https://github.com/Qiskit/RFCs/blob/master/0022-circuit-block.md

𝑃𝑃†
𝑃† travels

𝑃 collected
in place

Example. Pauli-twirled box.

Working towards a declarative execution

20

A new intermediate representation (IR)

• Boxes introduced in Qiskit 2.0.

• Annotations introduced in Qiskit 2.1.

• Main ideas:

• Use boxes to isolate subcircuits.

• Use annotions to add virtual gates to boxes.

• More details in Qiskit/RFC [1].

[1] https://github.com/Qiskit/RFCs/blob/master/0022-circuit-block.md

An interpreter to convert from new IR to existing IR

• Returns:

• A template circuit with parametrized gates.

• A “dag” object to sample random parameters.

Using DAGs to improve performance

21

DAG unlocks new patterns for performance:

• Generating params on-the-fly to keep HW busy.

• Execute until target precision is reached.

DAG
generate
params

QPU consumes
params

time

QPU consumes
params

DAG
generate
params

QPU consumes
params

DAG
generate
params

precision
reached

Dag needs to be faster than HW.

• Internal implementation as directed acyclic graph.

𝑃𝑃† 𝑃𝑃†𝑃𝑃†

𝑐𝑋 0, 1 𝑐𝑋 1, 2𝑐𝑋(1, 2)

𝑐𝑋 2, 3
Propagate

Collect

Generate

The evolution of the primitives.

23

ZNE options

• Amplifier. PEA

• Factors. [1, 1.2, 1.4]

• Extrapolator. Linear.

0

None

1 2

3

TREX

PEC

PEA

* ZNE options:

* mitigation: PEA

* factors: [1, 1.2, 1.4]

* extrapolator: linear

Phase 1. Fully-automated mitigation.

Where we mitigate your circuits for you.

• Users selects resilience levels.

• Server does all the heavy lifting.

Phase 2. Guided control.

Where you can tweak some parameters.

• Resilience levels still supported.

• Additionally, users can define
custom options to meet their needs.

Phase 3. Declarative execution.

Where users get near-complete control.

• IR to reason about virtual gates.

• The primitives provide building
blocks to write new functionalities.

• New paths to performance to
explore and benefit from.

Conclusions.

24

What does it take to turn a good error-mitigation paper into

performant software?

25

	Slide 1: Error Mitigation From theory to performant code Sam Ferracin Backend Software Engineer IBM Quantum WERQSHOP New York, USA July 17, 2025
	Slide 2: Error Mitigation: A field of growing interest
	Slide 3: None of this matters if our protocols do not become performant software.
	Slide 4: Efficient “on paper” vs performant software
	Slide 6: From “on paper” efficient to performant code
	Slide 7: Patterns for performance. Achieving a 50x speedup.
	Slide 8: The CLOPS benchmark
	Slide 9: CLOPS progress
	Slide 10: How to achieve a 50x speedup
	Slide 11: How to achieve a 50x speedup
	Slide 12: How to achieve a 50x speedup
	Slide 13: CLOPS progress
	Slide 14: Software capabilities. The evolution of primitives.
	Slide 15: The evolution of the primitives.
	Slide 16: Adding a new feature.
	Slide 17: A healthy development cycle.
	Slide 18: From features to building blocks
	Slide 19: Working towards a declarative execution
	Slide 20: Working towards a declarative execution
	Slide 21: Using DAGs to improve performance
	Slide 23: The evolution of the primitives.
	Slide 24: Conclusions.
	Slide 25

