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Noise is the defining characteristic
of NISQ computation!

Example: Google’s fidelity for their 2019 quantum advantage
demonstration was just 0.002.

Can we compute with noisy
devices?

= can we extract any signal
from quantum noise?
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Noise is the defining characteristic
of NISQ computation!

Example: Google’s fidelity for their 2019 quantum advantage
demonstration was just 0.002.

Can we compute with noisy
devices?

= can we extract any signal
from quantum noise?

VMW\Am«N\,«V\vavm/v‘J\r'v\/\/"»f\/\/\N\'\'WﬁJ\”f

This talk is about going beyond conventional wisdom regarding this
qguestion.
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Conventional wisdom

[Can quantum computation be made robust against errors? }

~1999 [Shor, Aharonov, Ben-Or ++]: YES, in theory — can do quantum
error correction if noise is low enough!
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Conventional wisdom

[Can quantum computation be made robust against errors? }

~1999 [Shor, Aharonov, Ben-Or ++]: YES, in theory — can do quantum
error correction if noise is low enough!

~2015 — NISQ era: MAYBE — We don't have enough qubits for quantum
error correction and we also can't make measurements in the middle of
a computation.
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Conventional wisdom

[Can quantum computation be made robust against errors? }

~1999 [Shor, Aharonov, Ben-Or ++]: YES, in theory — can do quantum
error correction if noise is low enough!

~2015 — NISQ era: MAYBE — We don't have enough qubits for quantum
error correction and we also can't make measurements in the middle of
a computation.

~2020 [Some people including me]: In that case, NO (see next slide)
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Conventional wisdom

[Can quantum computation be made robust against errors? }

~1999 [Shor, Aharonov, Ben-Or ++]: YES, in theory — can do quantum
error correction if noise is low enough!

~2015 — NISQ era: MAYBE — We don't have enough qubits for quantum
error correction and we also can't make measurements in the middle of
a computation.

~2020 [Some people including me]: In that case, NO (see next slide)

~ 2024/2025 [This talk]: But what about NISQ+?
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Depolarizing noise is certifiably bad news
(if you cannot error correct)

nature physics

Explore content v About the journal v  Publish with us v

nature > nature physics > articles > article

Article \ Published: 21 October 2021
Limitations of optimization
algorithms on noisy quantum

devices

Daniel Stilck Franca ® & Raul Garcia-Pz nature communications

Explore content v About the journal v  Publish withus v

nature > nature communications > articles > article

Article \ Open access \ Published: 29 November 2021

Noise-induced barren plateausin
variational quantum algorithms

Samson Wang 8, Enrico Fontana, M. Cerezo 8, Kunal Sharma, Akira

Sone, Lukasz Cincio & Patrick J. Coles™
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Noise-induced barren plateausin
variational quantum algorithms

Samson Wang &, Enrico Fontana, M. Cerezo®, Kunal Sharma, Akira

Sone, Lukasz Cincio & Patrick J. Coles™
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Depolarizing noise increases entropy!
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Depolarizing noise increases entropy!

Depolarizing noise
[acts on each qubit _ ]

I ||||

i nm"v
™
y I
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w&

as: P

==

Maximally-mixed state _ ~ uniform distribution on a single bit.
Contains no information; maximally entropic!
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Depolarizing noise increases entropy rapidly!
Depolarizing noise

acts on each qubit _ i = single-qubit
as: {4y & noise

ﬁ'l'l'l'lm"

==

Maximally-mixed state .. ~ uniform distribution on a single bit.
Contains no information, maximally entropic!

‘Gate-based’ noise in a circuit: noise acts after every gate!

Pin ,j | ]:Ilj E — __ What state does
. 3 ; e . . . 9
(n qubits) I:[ ]:l:[l' this circuit output:

depth()
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As circuit depth increases:

— é )
4 TEA A A state that contains
— £ : o T 1 noinformation and
(nqubltS) £ 7% Notlsytm;ctslts ﬂ[::> L1 can't be used for
output state computation

_/

. _/ .

depth(—f
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As circuit depth increases, depolarizing noisy

circuit eventually outputs maxim(ally—mixed state
- )

IRy A state that contains
— L r T no information and
< ¢ = INoisy circuit's

e ﬂ[:l'> £+ can't be used for
output state computation

depth(;;) k ) \ )

Pin

(n qubits)

I
Il

Trace norm — measures how ‘far apart’
states are.
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As circuit depth increases, depolarizing noisy
circuit eventually outputs maximally-mixed state

— 4
0; 4 TEA A A state that contains
o = £ 1 no information and
1 oisycreutts | L cant e useafor
‘ computation
depth(;;) k ) \ )

for any Pin, any ; c<1

'h.'lllllllllllllllllll

C<F>_nve"r-gﬁeﬁnce in Iog depth for all circuits :(
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As circuit depth increases, depolarizing noisy
circuit eventually outputs maximally-mixed state

— 4
0; 4 TEA A A state that contains
o N r 1 noinformation and
(n qubits) ; gluOtI;ﬁtC;(;l:gs [ |+ cantbe used for
: computation
depth(;:-z) \ J k )

for any Pin, any ; c<1

C&nvé}géhce in Iog depth for all circuits :(
Huge problem for quantum advantage!
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What is error mitigation?

In a world with noiseless quantum computers:

Expectation values
p

Quantum circuit
running
algorithm of
interest
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What is error mitigation?

Ircuit layers interspersed with nois

fese £

In the real world, C is noisy:

- qubit decoherence
- gate errors

Noi

Expectation values
or samples

Quantum circuit
running
algorithm of
interest
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What is error mitigation?

Ircuit layers interspersed with nois

eEe e

In the real world, C is noisy:

Proposal: revert the

effect of noise on the

computation result, with

classical P —
post-processing.

Nloj
ExpectasqQ
or samples

Error mitigation

algorithm )
. —_— expectation values or
(classical) samples

Almost noiseless
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Example of error mitigation protocol

Zero-noise extrapolation:

125

1) Run the circuit of interest at ampllﬁed L0

0.75 A

”WM

noise level A (call this ).
2) Measure

E(A)

i
memmnmnll

0.50 A

P P p———

0.25 A1

- @xact mean

mean * 1 st.dev.
accessible to noise scaling

0.00 A

—0.25 1

Pt

4 5 6 7

Depolarizing noise level scaling A

Plot taken from Giurgica-Tiron et al,
2020 IEEE International Conference on
Quantum Computing and Engineering

(QCE)
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Example of error mitigation protocol

Zero-noise extrapolation:

Sl e ey
1) Run the circuit of interest at amplified o - meansstder
noise level A (call this ). ¥y o B
2) Measure z Zz:
= _ 0.00 A : > 4 % #
% é§ —0.25 1 i T f ] i I T
3) or different A. o 1 2 3 a4 5 6 1

Depolarizing noise level scaling A

Plot taken from Giurgica-Tiron et al,
2020 IEEE International Conference on

Quantum Computing and Engineering
(QCE)
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Example of error mitigation protocol

Zero-noise extrapolation:

1.25

1) Run the circuit of interest at amplifiec L

- @xact mean

mean * 1 st.dev.
accessible to noise scaling

P P p———

noise level A (call this ). | .
2) Measure T Zz:
—_ \, 0.00 ! X —%
% é§ —0.25 1 i ! ! ! 1 t #j
3) Repeat steps 1, 2 for different A. ¢t B & S F & & 4

Depolarizing noise level scaling A

4) Output the extrapolated value

Plot taken from Giurgica-Tiron et al,
2020 IEEE International Conference on

Quantum Computing and Engineering
(QCE)
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QFKME'24

Our model of error mitigation

T

. = error mitigation
algorithm

[T} ] | .
EEEE 88

P —— .
: : Expectation values
or samples

...............................................
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QFKME'24

Our model of error mitigation

] | -
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QFKME'24

Our model of error mitigation

Quantum circuits:
= — 1 —

n qubits, depth D
D circuit layers

Noise model:
......................................... local depolarizing noise of strength p after each

— layer
Expectation values
or samples
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QFKME'24

Input to

lIIII||""|“I

[T 10} | | .
BEEE S

Input:

Copies of _/
output by cfeicicfoeee s L
circuits with
depolarizing

noise of A Expectation values
strength p or samples

;4

...............................................
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QFKME'24

Output of

[T} ] | .
EEEE 88

g;ti:on - e.g. VQE)

>]

(weak error miti

Expectation values
or samples

|
b

W\I\I\I\I\IUI\I\I\I\I\I\‘

:
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QFKME'24

i

|
|l|l|"“|"I

Output of

¥ = noiseless
circuit output
state

| ] | .
B B0 BE

Y

7(Weak error rﬁitigé‘;on - e.g. VQE)

” wHHI\I\I\I\I\I\IH

= NOisy circuit
output state

|

Expectation values
or samples
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Our question: sample complexity of
error mitigation?

How many

copies of Az i

does /i need.. <

. Expectation values
: or samples




Our question: sample complexity of
error mitigation?

How many X
copies of _/
does £ need.. <

to = precision with probability




Our question: sample complexity of
error mitigation?

Relevant params:

p (noise strength)

How many X
copies of _/
does £ need.. <

to = precision with probability



QFKME'24

Our lower bounds

..............................................

4 :
How many - .. to estimate

coplesofé Wi

does £ need... < A

\I\IUHHHI

Relevant parameters:

\ — - p (depolarizing noise

strength)

"|umnunllllllllllll‘

has depolarizing

if circuit Outputtl g
epth N

Thm1::
noise an

I

" Ui lll\“\"

'T'u'

S5

o

_o]l

\‘\lﬂm i
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\
|
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—
>
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QFKME'24

How to interpret our results

We show: exp(£2(nD))runs of a depolarizing-noisy circuit
are required for good error mitigation.
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QFKME'24

How to interpret our results

We show: exp(£2(nD))runs of a depolarizing-noisy circuit
are required for good error mitigation.

e Previous belief: exp(€2(D)) copies required.
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QFKME'24

How to interpret our results

We show: exp(£2(nD))runs of a depolarizing-noisy circuit
are required for good error mitigation.

e Previous belief: exp(2(D)) copies required
e But NISQ circuits are depth "T1 .. 7 .

.1y our result is
exponentially stronger.

i '
M’I ||
Imum n"
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QFKME'24

How to interpret our results

We show: exp(£2(nD))runs of a depolarizing-noisy circuit
are required for good error mitigation.

e Previous belief: exp(€2(D)) copies required.
e But NISQ circuits are depth “JT 3 ../ sty ourresultis

exponentially stronger.
e Loss of quantum advantage for error-mitigated algorithms may

occur earlier than expected in the presence of noise
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QFKME'24

Proof intuition

Question: How many copies of _/ are needed for EM?
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QFKME'24

Proof intuition

Question: How many copies of _/ are needed for EM?

We construct such circuits:

Depolarizing noise (also causes rapid convergence to

/ m.m. state)

A )
" T

3 I U

L\ |' 2 \

Al
v v 'S
I s N )
REX SRS

U

Extremely rapidly scrambling Clifford circuits
- quick convergence to m.m. state

P
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QFKME'24

Proof intuition

Question: How many copies of _/ are needed for EM?

We construct such circuits:

Depolarizing noise (also causes rapid convergence to

/ m.m. state)
,_ What this captures:

7N ' .o .
@)@ & depolarizing noise and the

o @ IS circuits ‘conspire’ to push the

state toward maximally mixed.
Extremely rapidly scrambling Clifford circuits

With no intermediate
- quick convergence to m.m. state mercy of entropy generation.

P

measurements, you are at the
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What about...non-unital noise?

Not all noise is depolarizing!

See: T1 decay,
atom loss, photon loss.

Superconductlng qubits (Google, Neutral atom arrays (e.g. Lukin
IBM, Rigetti) group/QuEra)
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What about...non-unital noise?

Not all noise is depolarizing!

See: T1 decay,

atom loss, photon loss.

Superconductina aubits

Error source

Time optimal

Smooth amplitude

Scattering® |1)

Scattering |0)

Rydberg T = 88 us

Rydberg T3 =3

Position fluct.

s

0.103% / 0.043%
0.019%
0.113%
0.134%
0.012%

0.036%
0.025%
0.085%
0.089%

0.054%

Error type X. Y, E, LG
6%, 6%, 25%.
™%, T%, 14%, 2%, 10%
2%, 2%, 6%, 33%, 67%
0%, 0%, 75%,10%, 25%

0%, 0%, 96%] 0%, 4%

Rydberg mj=-1 0.06 - 0.15% 0.01%
Total fidelity 99.53 - 99.62% 99.70%

2%, 2%, 41%, 7%, 38%
L

From High-fidelity parallel entangling gates on a neutral-atom quantum computer
Yihui Quek | MIT-EPFL | Noise vs quantum algorithms | Wergshop


https://www.nature.com/articles/s41586-023-06481-y

What about...non-unital noise?

Not all noise is depolarizing!|

See: T1 decay,
atom loss, photon loss.

Superconducting qubits (Google, Neutral atom arrays (e.g. Lukin
IBM, Rigetti) group/QuEra)

Definition of non-unital quantum channel: doesn't preserve the m.m. state.

Canonical example: amplitude damping noise! ~ partial reset-to-[O>
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What about...non-unital noise?

Not all noise is depolarizing!i

See: T1 decay,
atom loss, photon loss.

Superconducting qubits (Google, Neutral atom arrays (e.g. Lukin
IBM, Rigetti) group/QuEra)

Definition of non-unital quantum channel: doesn't preserve the m.m. state.

Canonical example: amplitude damping noise! ~ partial reset-to-[O>

Non-unital noise: physically important yet shockingly understudied!

Yihui Quek | MIT-EPFL | Noise vs quantum algorithms | Wergshop
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Fantastic features of
non-unital noise and
where to find them:

| will use amplitude-damping noise as a concrete example; behaviors hold for
general non-unital noise.
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1. Amplitude-damping and depolarizing noise
have different fixed points

Depolarizing noise tends to “scramble”
the distribution by increasing
entropy.

Fixed point: maximally-mixed state
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1. Amplitude-damping and depolarizing noise
have different fixed points

Depolarizing noise tends to “scramble”
the distribution by increasing Amplitude damping noise tries to
entropy. “unscramble” the distribution by

decreasing entropy!
Fixed point: maximally-mixed state

Fixed point: |O>
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1. Amplitude-damping and depolarizing noise
have different fixed points

Depolarizing noise tends to “scramble”
the distribution by increasing Amplitude damping noise tries to
entropy. “unscramble” the distribution by

decreasing entropy!
Fixed point: maximally-mixed state

Fixed point: |O>

Consequence: The same circuit, with depolarizing noise and with amplitude
damping noise, acts very differently on the Bloch sphere!
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1. Amplitude-damping and depolarizing noise
have different fixed points

Circuit with depolarizing
noise

|0)

4D

1)

denotes noise fixed
point

Noise drives input towards the center
of Bloch sphere.
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1. Amplitude-damping and depolarizing noise

have different fixed points

Circuit with depolarizing Circuit with amplitude
noise damping noise

denotes noise fixed
point

4D 4D

1) 1)

Noise drives input towards the center

Noise drives input towards the north pole
of Bloch sphere.

of Bloch sphere.
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Consequence: No barren plateaus

Circuits used for quantum machine
learning often display barren plateaus,
making them hard to optimize.

Yihui Quek | MITEPFL | Noise vs quantum algorithms | Wergshop
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MAEGKFQ'24
Consequence: No barren plateaus

Circuits used for quantum machine We show: optimization landscape
learning often display barren plateaus, under non-unital noise is not
making them hard to optimize. barren.
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MAEGKFQ'24
Consequence: No barren plateaus

Circuits used for quantum machine We show: optimization landscape
learning often display barren plateaus, under non-unital noise is not
making them hard to optimize. barren.

Important limitation: we don’t show that the resulting peak is at
the location of minimum energy, but others have tackled this.
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2. The miracle of non-unital noise:
fault-tolerance “for free”?

Pin

(n qubits)

>

log(n)

With no error correction,
depolarizing noise erases all
information within a circuit after
log(n) depth.
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2. The miracle of non-unital noise:
fault-tolerance “for free”?

(n qubits) = = (n qubits)
log(n) T epl)
With no error correction, Quantum refrigerator proposal:
depolarizing noise erases all Even with no error correction,
information within a circuit after non-unital noise can be
log(n) depth. leveraged to compute for exp(n)
depth!

Yihui Quek | MITEPFL | Noise vs quantum algorithms | Wergshop
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2. The miracle of non-unital noise:
fault-tolerance “for free”?

Key idea [Aharonov/Ben-0Or 1999]: it's possible to do fault-tolerant quantum
computation without intermediate measurements if one supplies fresh
auxiliary qubits in the state [O>.
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2. The miracle of non-unital noise:
fault-tolerance “for free”?

Key idea [Aharonov/Ben-0Or 1999]: it's possible to do fault-tolerant quantum
computation without intermediate measurements if one supplies fresh
auxiliary qubits in the state [O>.

Quantum refrigerator [Gottesman, Ben-Or 2013]: Let's use hon-unital noise
to supply us with qubits in the state |O>!

Remember: Amplitude-damping noise ~ reset-to-all-Os
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Amplitude-damping noise ~ reset-to-all-Os
2. The miracle of non-unital noise:
fault-tolerance “for free”?

Fault Tolerant High Entropy
Computation Syndrome High Entropy Fridge Waste
Qubits Qubits

1C =
I mmn
i1C g

Jojesaduyay

Almost Fresh
Clean Qubits

Quantum refrigerator, Ben-Or, Gottesman, Hassidim (arXiv 1301.1995)
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Amplitude-damping noise ~ reset-to-all-Os

2. The miracle of non-unital noise:
fault-tolerance “for free"?

Fault Tolerant
Computation Syndrome
\ Qubits \
1C

Qubits
.HIIIIIIIIHIIIIIIIH||||||||||||||||||||||||||||||—
1C

Implemented by
non-unital noise_
(drives towards X

s
LLLLE LD
N Y IO |
g iiii i

Quantum refrigerator, Ben-Or, Gottesman, Hassidim (arXiv 1301.1995)
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Amplitude-damping noise ~ reset-to-all-Os
2. The miracle of non-unital noise:
fault-tolerance “for free”?

Fault Tolerant High Entropy
Computation Syndrome High Entropy Fridge Waste
Qubits | Qubits

1C =
t i
1C
No intermediate

measurements or
fresh qubits are
necessary!

Implemented by
non-unital noise
(drives towards %)

| [ [ ]

TTI11 11)

N A

2 v U v e i

g

Quantum refrigerator, Ben-Or, Gottesman, Hassidim (arXiv 1301.1995)
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Application: Error recovery beyond error
mitigation?

Error mitigation Error correction

Few quantum resources but Sample-efficient but large
high sample complexity quantum resource burden
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Application: Error recovery beyond error
mitigation?

Error correction

lv) —

Error mitigation

Goldilocks zone?

l0)
l0)
lo) —&
lo)
lo)
lo)
lo)
lo)

Sample-efficient but large
qguantum resource burden

Few quantum resources but I Few measurements; no/few ancillas;
high sample complexity I some encoded gates
" “Best of both worlds”!

Is the “quantum refrigerator” exactly what we need?
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MAEGKFQ'24

A limitation to bear in mind

For a circuit with random gates, non-unital noise (like depolarizing
noise) also creates effectively shallow circuits.
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MAEGKFQ'24

A limitation to bear in mind

For a circuit with random gates, non-unital noise (like depolarizing
noise) also creates effectively shallow circuits.

o Single-qubit nonunital
noise

Pin

(n qubits)

All gates more than log(n) layers from the last layer cannot influence
expectation values by much!
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MAEGKFQ'24

Million-dollar question: Can you still get quantum
advantage via nonunital noise for a sampling task?
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MAEGKFQ'24

Million-dollar question: Can you still get quantum
advantage via nonunital noise for a sampling task?

Pin

(n qubits)

@: nonunital noise

Effective shallow depth picture
only holds for local expectation

values.
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MAEGKFQ'24

Million-dollar question: Can you still get quantum
advantage via nonunital noise for a sampling task?

On verifiable quantum advantage with peaked circuit sampling

Pin

(n qubits)

Scott Aaronson*! and Yuxuan Zhang®123

1Department of Computer Science, The University of Texas at Austin.
?Department of Physics and Centre for Quantum Information and Quantum Control,
University of Toronto
3Vector Institute for Artificial Intelligence, W1140-108 College Street, Schwartz Reisman
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log(n) Can non-unital noise help you to hide
@ ronnielnore layers a peak in a shallow depth circuit?
Effective shallow depth picture Hide = classical computer cannot tell
only holds for local expectation from circuit description if peaked or
values. andom.
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Exponentially tighter bounds on limitations of quantum error mitigation = I l-
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Quantum error mitigation has been proposed as a means to combat unwanted and unavoidable
errors in near-term quantum computing by classically post-processing outcomes of multiple quantum
circuits. It does so in a fashion that requires no or few additional quantum resources, in contrast
to fault-tolerant schemes that come along with heavy overheads. Error mitigation leads to noise

leductlon in smaﬂ achemeb of quantum COHlplltdthIl In thlb work, however, we 1(lent1fy strong 111111—
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Noise-induced shallow circuits and absence of barren plateaus
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Motivated by realistic hardware considerations of the pre-fault-tolerant era, we comprehensively study the
impact of uncorrected noise on quantum circuits. We first show that any noise ‘truncates’ most quantum circuits
to effectively logarithmic depth, in the task of estimating observable expectation values. We then prove that
anantum circnits under anv non-unital noise exhihit lack of barren nlateans for cost functions comnosed of local
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