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QEC & QEM

QEM:
• Low or no qubit overhead.
• Low or no requirement on gate fidelity (few additional quantum 

operations needed)
• Fast computation on unencoded (or low-distance) qubits 

QEC:
• Exponential suppression of error with increased qubit overhead

and without sampling overhead.
• Universal applicability to all algorithms
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Dealing with dangerous errors

Virtual Quantum Error Correction
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Liu et al, “Virtual Channel Purification”, PRX Quantum 6 (2), 020325

Prior Work:
Piveteau et al, PRL 127, 200505 (2021), 
Suzuki et al, PRX Quantum 3, 010345 (2022).



Virtual Channel Entanglement

• After post-processing based on the 𝑋 measurement, the effective 
output state for the two unmeasured registers is
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where the two noise channels are virtually entangled.
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Virtual Quantum Error Correction

• Choosing 𝜎 to be the code state of a 
non-degenerate QEC code that can 
correct ℰ1/2

• Stb measurements → syndrome 𝑘,
→collapse incoming errors into 𝐸𝑘

• We are performing QEC on the
unencoded register!
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Virtual Quantum Error Correction

• The error correction is virtual because it requires post-processing
based on control-qubit 𝑋 measurement

• The post-processing comes with a sampling overhead of around

∼ σ𝑘 𝑝𝑘
2 −2

which is similar to virtual state purification (distillation), but now we
can achieve the same noise suppression power as QEC.
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Comparison to pure QEC

• Goal: send a 𝐾-qubit state 𝜌 through the noise channel ℰ2.

• Code overhead: suppose we need 𝐾 physical qubits per logical qubit 

• QEC: the total number of qubit required is 𝐾2.

• VEC: The total number of qubits required is 2𝐾 + 1.

• Limitation: VEC only works when the errors in ℰ1/2 is non-degenerate
(distinct syndromes for distinct errors ) for the given code.
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Combining two codes

• Instead of an encoded and an unencoded register, we put one register
in bit-flip code and the other in phase-flip code

• Bit-flip check collapses the bit-flip noise on both registers, similarly for
phase noise.

• So we only need two classical codes to correct quantum noise (both
bit-flip and phase-flip)
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Comparison to surface code
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• Using distance-𝑑 bit-flip and phase-flip repetition codes for VEC, we
can correct the same set of errors as distance-𝑑 surface codes.

• Advantages: 

• Qubit overhead: 2𝑑 + 1 (VEC) VS 𝑑2 (surface code)

• Limitation:

• Sampling overhead: same as virtual channel purification (two-
copies)

• Assuming noiseless CSWAP and stb checks. (Can be further
mitigated using PEC)

• Further work needed for computation.



Dealing with dangerous errors

QEM for Sampling Algorithm
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Liu & Cai, “Quantum Error Mitigation for Sampling Algorithms”,
arXiv:2502.11285



QEM for Sampling Algorithm

• QEM use post-processing to combine the output from multiple noisy 
circuits to obtain the error-mitigated expectation values.

• The effective damage from noise is only reduced for the entire 
ensemble of circuit runs.

• The noise remains unchanged or even increases when zoom 
individual circuit runs.

• Sampling algorithms (e.g. quantum phase estimation): rely on 
accurate results for every circuit run, thus seems to be inherently 
incompatible with QEM (except for those uses post-selection).

11



Error-mitigated State

• QEM can also be viewed as trying to extract the error-mitigated 
“states” 𝜌𝑒𝑚 out of the noisy circuit runs.

• The error-mitigated expectation value is given as Tr(𝑂𝜌𝑒𝑚). (𝑂 is
the observable of interests)

• The error-mitigated states 𝜌𝑒𝑚 is obtained via linear combination of 
output states from different circuit configurations.  

• This covers most mainstream QEM techniques.

12Cai et al, arXiv:2110.05389. 



Examples of Error-mitigated States

• Linear Zero-noise extrapolation (can be generalized to Richardson):
𝜌𝑝 = (1 − 𝑝)𝜌0+𝑝𝜌𝑒𝑟𝑟  ⇒  𝜌0 = 𝜌𝑒𝑚 ∝ 𝑝2𝜌𝑝1

− 𝑝1𝜌𝑝2

• Probabilistic error cancellation for bit-flip noise:
𝜌 = (1 − 𝑝)𝜌0+𝑝𝑋𝜌0𝑋 ⇒  𝜌0 = 𝜌𝑒𝑚 ∝ (1 − 𝑝)𝜌 − 𝑝𝑋𝜌𝑋

• Also applicable to other major QEM techniques like virtual
purification and symmetry verification.

13Cai et al, arXiv:2110.05389. 



State to Distribution is Taking Expectation.

• The output probability of a string 𝑧 is the expectation value of the 
projector Π𝑧 = |𝑧⟩⟨𝑧|. 

𝑝 z = Tr Π𝑧𝜌

• All probabilities of different 𝑧 can be measured simultaneously.

In a given circuit run, by measuring in the computational basis which 
output the string 𝑧′, we have obtained one sample for all {Π𝑧} with 

• one sample of 1 for the Π𝑧 with 𝑧 = 𝑧′

• one sample of 0 for the Π𝑧 with 𝑧 ≠ 𝑧′
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QEM for Recovering Output Distribution

• Obtaining error-mitigated distributions 𝑝𝑒𝑚 z = Tr Π𝑧𝜌𝑒𝑚  from
error-mitigated states 𝜌𝑒𝑚 is efficient.

• Existing mainstream QEM techniques can be used to extract error-
mitigated “states” 𝜌𝑒𝑚, thus can be straightforwardly extended to
extract error-mitigated distributions.
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PEC Example

• Probabilistic error cancellation for bit-flip noise:

𝜌 = (1 − 𝑝)𝜌0+𝑝𝑋𝜌0𝑋 ⇒  𝜌0 = 𝜌𝑒𝑚 =
(1 − 𝑝)𝜌 − 𝑝𝑋𝜌𝑋

1 − 2𝑝

• Implementation:

1. Sample 𝜌 and 𝑋𝜌𝑋 with probability (1 − 𝑝) and 𝑝, respectively.

2. Measure in computation basis {𝑍𝑖}, post-process to obtain the set
of observables {Π𝑧}.

3. If 𝑋𝜌𝑋 is sampled, attach minus sign to the output.

4. 𝑝𝑒𝑚 z is estimated by taking the average over all samples of Π𝑧
and renormalise the result with the 1 − 2𝑝 −1 factor.
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Sampling overhead

• Let us consider the trivial observable 𝐼:

 መ𝐼 = σ𝑧
෡Π𝑧 ⇒ Var መ𝐼 ≈ σ𝑧 Var ෡Π𝑧 ( Cov < 1)

• i.e. the variance of estimating a single observable 𝐼 is similar to the
total variance of estimating the probability of all 𝑧, i.e. the entire
probability distribution.

• For a given number of circuit runs, the total variance achieved for all 
entries in the entire estimated distribution is actually similar to the 
variance of one single observable. 
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Application to Quantum Phase Estimation

• Considering using quantum phase estimation for obtaining ground
state energy.

• Instead of trying to obtain the whole distribution, we are trying to
obtain the smallest string from the output distribution.

• Cannot simply output the smallest string from the estimated error-
mitigated distribution, since shot noise can turn zero-probability
entries to non-zero.
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Application to Quantum Phase Estimation

• An additional step to test whether an entry is likely to be zero or not.

• Set a threshold probability 𝑝th(𝑧) for each entry such that
• Ƹ𝑝em 𝑧 ≤ 𝑝th 𝑧 ⇒ Accept null: 𝑝em 𝑧 = 0

• Ƹ𝑝em 𝑧 > 𝑝th 𝑧 ⇒ Accept null: 𝑝em 𝑧 > 0

• 𝑝th 𝑧 can be set using:
• Proportional to the sample standard deviation of the Ƹ𝑝em 𝑧 estimator.

• Known lower bound of the probability of the smallest string.
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Numerical Simulation

• QPE with 4-bit precision

• Circuit error rate ∼ 0.6

• 106 runs
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• Total square errors reduced from
0.297 to 0.004

• Valid threshold: 0.03 < 𝑝th < 0.16



How to sample from the QEM distribution?

• Without QEM, when measure 𝑧 in a circuit run, we put one sample
into the “bucket” corresponding to outcome 𝑧.

• With QEM, when measure 𝑧 in a circuit run, there is also a additional
sign associated with the circuit configuration we are running:

• +ve sign: add one sample into the “bucket” corresponding to
outcome 𝑧

• -ve sign: remove one sample from the “bucket” corresponding to
outcome 𝑧
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How to sample from the QEM distribution?

• There can be negative number of samples! Esp. when the number of
circuit run is small.

• When comes to interpretation of results, these negative number can
effectively be treated as zero since any components below zero are
entirely due to shot noise.
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Summary

• VEC is a framework to combine the power of different QEC
codes using post-processing.

• QEM can be used for recovering the output distribution and also
sampling from it, and this is as cheap as one observable.

Open questions:
• More general frameworks to combine QEC and QEM, hopefully

introducing a range of techniques with different trade-offs.
• What are the other (practical) algorithms that still fall outside

the remit of QEM? How to include them?
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